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ABSTRACT 

In principle, the tensor metic (gravity-wave) perturbations that arise in in- 

flationary models can, beyond probing the underlying inflationary model, 

provide information about the Universe: ionization history, presence of a 

cosmological constant, and epoch of matter-radiation equality. Because ten- 

sor perturbations give rise to anisotropy of the cosmic background radiation 

(CBR) solely through the Sachs-Wolfe effect we are able to calculate ana- 

lytically their contribution to ihe variance of the multipole moments of the 

CBR temperature anisotropy. In so doing, we carefully take account of the 
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effect of tensor perturbations that entered the Hubble radius during both 

the matter-dominated and radiation-dominated epoch by means of a trans- 

fer function. (Previously, only those modes that entered during the matter 

era were properly taken into account.) The striking feature in the spectrum 

of multipole amplitudes is a dramatic fall off for 1 2 JG, where zrss 

is the red shift of the last-scattering surface, which depends upon the ioniza- 

tion history of the Universe. Finally, using our transfer function we provide a 

more precise formula for the energy density in stochastic gravitational waves 

from infiation, and, using the Cosmic Background Explorer Differential Mi- 

crowave Radiometer (COBE DMR) quadrupole normalization, we express 

this energy density in terms of the “tilt” of the spectrum of tensor pertur- 

bations alone and show that it is unlikely that the stochastic background of 

gravity waves can be detected directly in the foreseeable future. 



1 Introduction 

Quantum fluctuations arising during inflation lead to a spectrum of scalar 

(density) [l] and tensor (gravity-wave) [2] metric perturbations which are 

nearly scale invariant [3]. In turn, both give rise to anisotropy in the temper- 

ature of the cosmic background radiation (CBR), with their relative contribu- 

tions depending upon the steepness of the inflationary potential [4, 51. CBR 

anisotropy and other astrophysical data, e.g., red-shift surveys, peculiar- 

velocity measurements, and data from gravity-wave detectors, can, in prin- 

ciple, be used to learn much about the inflationary potential in the narrow 

interval that governs the modes that affect sstrophysically interesting scales. 

For example, they can be used to infer the value of the inflationary potential, 

its steepness and the change in its steepness [5, 61. 

In all likelihood CBR anisotropy provides the cleanest and most sensi- 

tive probe of the metric perturbations created during inflation. The CBR 

anisotropies that arise due to scalar and gravity-wave fluctuations add in- 

coherently and can thus be computed separately. The calculation of the 

anisotropy that arises due to scalar perturbations is complicated and well 

understood: anisotropy arises due to at least three physical effects, the Sachs- 

Wolfe effect [7] (gravitational potential differences on the last-scattering sur- 

face), the velocity of the last-scattering surface, and intrinsic fluctuations 

in the CBR temperature at last scattering. Further, the ionization history 

and baryon density are very important [S]. On large-angular scales, for stan- 

dard recombination 8 2 2”, the Sachs-Wolfe effect dominates, and on small- 

angular scales the other two effects dominate. 

The CBR anisotropy due to tensor perturbations arises solely from the 

%&s-Wolfe effect. It depends significantly upon the red shift of the-last- 



scattering surface, and less significantly upon a possible cosmological con- 

stant and the red shift of matter-radiation equality (through the value of the 

Hubble constant). Thus, if the tensor contribution to CBR anisotropy can 

be separated from the scalar contribution, it provides a very direct probe 

of cosmology. The tensor contribution has been computed analytically, but 

only on large-angular scales with other simplifying assumptions being made 

191, and recently, numerically in the case of standard recombination and. a 

matter-dominated Universe [lo]. 

The purpose of our paper to give simple and accurate analytic formulae for 

the tensor contribution to the variance in the CBR temperature multipoles 

(]a,,,,]*) (“sngular power spectrum”). In previous analytical work [9], only the 

modes that enter the horizon after matter-radiation equality were properly 

taken into account, so that these results are accurate only on large angular 

scales; we take into account the modes that enter the horizon before matter- 

radiation equality by means of a transfer function and thereby accurately 

describe the CBR anisotropy that arises on all angular scales. The transfer 

function also allows us to give a more precise expression for the energy density 

in stochastic gravity waves produced by inflation, and, unfortunately, we 

show that it is very unlikely that this background can be detected-directly. 

We compare our results for CBR anisotropy, where possible, to the numerical 

results of Ref. [lo], and diiuss how the tensor multipoles depend upon the 

underlying cosmological parameters: the red shift of last scattering, z~ss; the 

red shift of matter-radiation equality, LEQ; and the presence of a cosmological 

constant. 



2 Gravity Waves and CBR Anisotropy 

2.1 Qualitative view 

In this Section we begin simply and gradually add detail, ending with our 

most general formulae. In that spirit we will assume scale-invariant metric 

perturbations to begin, and then generalize our results to allow fork devia- 

tion from scale invariance. For scale-invariant perturbations the amplitude 

of density perturbations and gravity-wave perturbations are independent of 

scale at horizon crossing in the post-inflationary Universe: (6~/~)noa E cS 

and how = &T- Horizon crossing is defined by IC,+, = k/R N H; R is the 

cosmic-scale factor and H is the expansion rate. Throughout we take the 

scale factor to be unity at the present epoch, so that comoving wavenumber 

k and physical wavenumber kphy, are equal today; comoving wavelength X 

and wavenumber are related by: X = 2rlk. 

It is useful to define the conformal time today, r,,, and at the last- 

scattering event, rnss: 

70 = I lo 
0 

dt/R(t) = 2H,-1; 

bss 
TLSS = I 0 

dt/R(t) = TO/~ (1) 

where we sssume a flat, matter-dominated Universe today. The quantities 

rs N 6000&t Mpc and Russ N 6000h-’ Mpc/dG correspond to the co- 

moving size of the present horizon and that at last scattering. The comoving 

distance to the last-scattering surface dLss = ~(1 - l/d=) N rs, and 

thus the angle subtended by the horizon scale at last scattering corresponds 

to Bnss N rnss/rs (- 2’ for zms = 1100). 

In the standard picture recombination occurs at a red shift of order 1300, 
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i.e., the ionization fraction X. becomes small, and last-scattering occurs a red 

shift of about znss ZT 1100, i.e., the photon mean-free path becomes greater 

than the Hubble scale [ll]. If the Universe remains ionized much later, 

or is reionized after recombination, the last-scattering event can occur much 

later, 1 +.znss N (0.03X,Rnh)-2/3, where Rs is the fraction of critical density 

contributed by baryons, HO = IOOh kms-‘set-‘Mpc-r, and Rs = 1. Taking 

h = 0.4, X, = 1, and saturating the primordial nucleosynthesis bound to the 

baryon mass density, R&r* 5 0.02 [12], 1 as scattering could occur as late t 

ss Russ N 76. While the conventional wisdom has it that cold dark matter 

models lack a plausible mechanism for reionizing, or keeping the Universe 

ionized at .z 5 1300, it has been suggested that a very early generation of 

stars could have reionized the Universe at red shift of order 100 or so [13]. 

The physics underlying the Sachs-Wolfe effect is very simple: The tem- 

perature fluctuation on a given angular scale is roughly equal to the metric 

fluctuation on the corresponding length scale on the last-scattering surface. 

For tensor perturbations, the metric perturbation is equal to the gravity-wave 

amplitude. For scalar perturbations the metric perturbation is given by the 

fluctuation in the Newtonian potential; on length scales that have yet to 

enter the horizon at last scattering, or that entered the horizon after matter- 

radiation equality, the fluctuation in the Newtonian potential is given by the 

horizon-crossing amplitude of the density perturbation. For scales that enter 

the horizon while the Universe is still radiation dominated the fluctuation in 

the Newtonian potential decreases after horizon crossing, as R-*. 

The CBR temperature fluctuation that arises on a given angular scale 
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due to scalar perturbations through the Sachs-Wolfe effect alone is roughly: 

(g), - ($),,,,,, N ES 62 @EQ; 

(F), ,.i (%) (:)no,,,,: (&)ES wEQi c2) 

where k(0) corresponds to the wavelength that subtends an angle 8 on the 

last-scattering surface, 

k(B) - (7) 7;1. 

Here, kEp is the scale that crossed the horizon at matter-radiation equality, 

and eEQ N i/dxN 0.3”. 

For scale-invariant perturbations and 0 2 eEQ N 0.3”, the Sschs-Wolfe 

contribution to the temperature fluctuation is independent of angular scale. 

On smah-angular s&s,-8 s eEQr the Sachs-Wolfe contribution to the CBR 

temperature anisotropy decreases, but is a subdominant contribution to total 

anisotropy produced by scalar perturbations. On angular scales larger than 

the horizon at last scattering, 0 2 0Lss N l/,/II (- 2” for zLss = 1100), 

the Sachs-Wolfe effect isthe dominant contribution to CBR anisotropy. 

The CBR temperature fluctuation on a given angular scale due to tensor 

perturbations arises solely through the Sachs-Wolfe effect and is roughly: 

6T ( > cl 
- ~Gw[~LSS,~(~)l; 

where how[znss, k(e)] is the (dimensionless) gravity-wave amplitude on the 

scale k(e) at last scattering. For gravity-wave modes that have yet to re- 

enter the horizon eat last scattering, how(zms, k) is just equal to &T; once a 

mode enters the horizon its amplitude red shifts as the scale factor, so that 

kw(a.ssrk) = ET@ HOR/RLSS). For modes that enter the horizon during 
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the matter-dominated epoch, R HOR/RLSS u (krLss)-*; for modes that enter 

during the radiation-dominated epoch, RHOR/RLSS N (k/k&(kq,ss)-‘. [A 

simple way to understand why the amplitude of a gravity-wave mode red 

shifts as the scale factor after it enters the horizon is that gravity-wave per- 

turbations correspond to massless bosons (gravitons) whose energy density 

(0: mp~k~h,,h~w) red shifts as Rm4.] 

For scale-invariant tensor perturbations the CBR anisotropy due to grav- 

ity waves is only independent of scale for 0 2 ems; on smaller angular scales 

it decreases, 

- ET 0 2 eHs; 

($), N ET (2) e soEQ. (5) 

On angular scales greater than that subtended by the horizon at last 

scattering, eLss N 2” in the standard scenario, the ratio of the tensor to the 

scalar contributions to the temperature anisotropy is constant and eqmd to 

ET/ES; in turn, this ratio is related to the steepness of the inflationary poten- 

tial, evaluated when these scales crossed outside the horizon during inflation 

(about 50 e-folds before the end of inflation): ET/&s N 150 m (mplV’/V)~ 

[4]. O&smaller angular scales the tensor contribution falls as 0* because these 

scales are dominated by gravity-wave modes that have entered the horizon 

before the epoch of last scattering and have had their amplitudes red shifted. 

On the smallest angular scales the tensor contribution only decreases as 8, 

as these scales are dominated by gravity-wave modes that enter the horizon 

before matter radiation equality. The steep fall off of gravity-wave modes for 
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I 2 JE provides a potential signature of .znss and tensor perturbations. 

It is conventional to expand the CBR temperature fluctuation on the sky 

in spherical harmonica: 

6T(*) co ’ 
-7jy- = z mIz, %n(rPLlW; (6) 

where the unobservable monopole term and the dipole term, which is dom- 

inated by the contribution of the observer’s peculiar velocity, are omitted. 

The multipole amplitudes depend upon the observer’s position r. The quan- 

tity lal,,J* averaged over all observation positions (the ensemble average) is 

referred to as the angular power spectrum,’ and is related approximately to 

the CBR temperature fluctuation by 

- 12(larm12) for 1 N 2000/e. 

To be more precise, the wns temperature fluctuation averaged over the 

sky for a given experiment is given by 

6T * (( >> 21+ 1 
To =g 47r 

----+l,I*)w; (8) 

where IV, is the appropriate response function for the experiment. For a two- 

beam experiment, where the temperature difference between two antennas 

of gaussian beam width u separated by angle 0 is measured, 

WJ = 2 [l - P,(cos~)] e++1/2)‘u*, 

For scale-invariant density perturbations the Sachs-Wolfe contribution to 

I* times the angular power spectrum is roughly constant and equal to ES 

‘More precisely, the average ia over all realizations of the fluctuation spectrum; we have 
implicitly assumed spatial ergodicity. 
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for 1 5 1 EQ; thereafter it decreases as Z-‘. For scale-invariant gravity-wave 

perturbations I2 times the angular power spectrum is constant for 1 5 Zr,ss 

(- 30 for standard recombination); it decreases as l-* for I 5 Ino; and and 

as lm2 for I 2 Ino. 

Finally, if the scalar and tensor perturbations are “tilted”-that is not 

scale invariant-say Es c( Xos and sr (x AaT, the previous results for (6T/T)s 

are modified by factors of P* and PT respectively, and for (jal,l*), by ,fa& 

tom of I-2”s and Z-*“’ respectively. The quantities os and or are related 

to the power-law indices often used to characterize the scalar and tensor 

perturbations (see below) by 

0s = (1 - n)/2; aT := -nT/2. 

The qualitative behaviour of the CBR anisotropy due to scalar and tensor 

perturbations is shown in Fig. 1. 

2.2 Quantitative view 

Some of what follows is a quick review of previous treatments included for 

completeness; for more details see Refs. [9]. To begin, we write the line ele- 

ment for a flat, Friedmann-Robertson-Walker (FRW) cosmology in conformal 

form plus a small perturbation hrV: 

gw = R*(d[~p,,Y + h,,y], 
where n,,” = diag(1, -1, -1, -1) and r is conformal time. Here we are only 

interested in gravity-wave perturbations and work in the transverse-traceless 

gauge, where the two independent polarization states are x and +, and 

~=hsQj=O. 



It is simple to solve for the evolution of the cosmic-scale factor in terms 

of conformal time: 

R(T) = [T/TO + R;;]* - REQ; (10) 

where we have assumed a tlat Universe with matter and radiation (i.e., pho- 

tons with present temperature 2.726 K and three massless neutrino species), 

& = 1, rs = 2H&/x LX 2H,- *, REQ = 4.18 x 10m5h-* is the value 

of the cosmic scale factor at the epoch of matter-radiation equality, and 

TEQ = [Jz- l]R$/a. ( The conformal age of the Universe today differs from 

2H;’ by a small amount due to the tiny contribution of the radiation energy 

density today: 

rday = 7. [&&- &j N 2H,-’ (1 - ,&) x 2H,-’ [l - O(l%)] , 

which we shall henceforth neglect.) 

We expand the gravity-wave perturbation in plane waves 

hjk(X, 7) = (21r)-’ / Bk hi&. e-ik’x; 01) 

where e& is the polarization tensor and i = X, +. The gravity-wave pertur- 

bation satisfies the msssless Klein-Gordon equation 

i;;+z 
(‘> 

g g + kq& = 0; (12) 

where an overdot indicates a derivative with respect to conformal time and 

k* = k . k. 

The growing-mode solutions to this equation have simple qualitative be- 

haviour: before horizon crossing (Icr &I 1) hi(r) is constant; well after hori- 

zon crossing (kr > 1) hi 0: cosk7/R. For modes that cross inside the 

horizon during the radiation-dominated era the exact’solution prior to and 
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including the radiation-dominated era is jo(k7); for modes that cross inside 

the horizon during the matter-dominated era the exact solution is 3jr(k7)/k7. 

Here je(z) = sin Z/L and jr(r) = sin Z/Z* - cos L/Z are the spherical-Bessel 

functions of order zero and one respectively, and both Bessel-function solu- 

tions have been normalized to unity for 7 -+ 0. 

Well into the matter-dominated era the temporal behaviour of modes 

that entered the horizon during the radiation-dominated era is also given by 

3jl(k7)/k7. Thus, for 7 > ~EQ the temporal behaviour of all modes is given 

by 3jr(kr)/k7, and it is useful to write 

hi(~) = hi&‘) T&/k& 

where the “transfer function” for gravitational waves, ?“(k/kEQ), is only a 

function of k/kEp, and 

kEQ S 7;; = 
7;‘R$ 
Jz _ 1 N 6.22 x lo-*h* Mpc-‘; 

is the scale that entered the horizon at matter-radiation equality. Note, 

during the oscillatory phase (k7 W I), 3j,(k7)/k7 + 3coskr/(k7)*; in 

defining and computing the transfer function we have neglected the phase of 

the graviton oscillations, which, for our purposes, is not important. 

The transfer function has been calculated by integrating EIq. (13) numer- 

ically from 7 = 0 to 7 = 7~,; a good fit to the transfer function is 

T(y) = [LO + 1.34~ + 2.50~2]“*; (15) 

where y = k/kEq. It might seem that one could have computed the trans- 

fer function at any time after the Universe becomes matter dominated and 

obtained the same result. However, ss we shall emphasize again later, the 
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Universe becomes matter dominated more slowly than one might have ex- 

pected, and for this reason the transfer function calculated at an earlier epoch 

is different. Only well into the matter-dominated epoch, when the radiation 

content is very negligible, does it take this functional form. Using the fact 

that once a mode is well inside the horizon hi(r) o( cos kr/R it follows that 

for modes with k W kEQ the transfer function at an earlier epoch is related 

to that today by 

T&/k& = (+o)*R-‘T(k/k& = [1+2x - 2&77j Z”o(k/k,,); (16) 

where x = REQ/R(~), T, is the transfer function at conformal time r, and 

2’ is the transfer function today. The evolution of the transfer function is 

shown in Fig. 2. 

Once a mode kas crossed inside the horizon one can sensibly talh about 

the corresponding energy density in gravitons; it is given by 

k@ _ mpl*k’ 
dk - 32z.zR* 14(7)12; (17) 

where m is the average of l/&l’ over all directions fi and over several 

periods. 

Inflation-produced tensor perturbations are stochastic in nature and char- 

acterized by a gaussian random variable. The Fourier components hi are 

drawn from a distribution whose statistical expectation is 

where we define the gravity-wave power spectrum ss* 

q(k) = ATk-3jl”(k)12 3ji;) I 1 
2 

08) 

‘Our notation is by no means standard; cf. 191. 
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A -m!!mv50 T - 3lrmp14. 

The quantity Vm is the value of the scalar potential around 50 e-folds before 

the end of inflation when the modes of astrophysical interest, say X N 1 Mpc- 

lO*Mpc, were excited and crossed outside the horizon; se-e [5]. [we note 

that the ensemble average and power spectrum are related by, (I$.]‘) = 

(2+&(k).] 

Using Eqs. (18, 19) it is a simple matter to compute the energy density 

today in the stochastic gravitational-wave background produced by inflation: 

d&w k dPi -=c--=44-- 
d In k - i Pcrit dk ‘~0 IT(k/k,,)l*(k7o)-*; 

w* 
(20) 

where Pcrit = 3Hi/8?rG N 1.05h2 x 104eVcmS3 is the present value of the 

critical density. This agrees with previous-results [14] in the liiit k < kEQ, 

and is shown in Fig. 3. 

The spectrum of gravitational waves is cut off at wavenumber [14] 

k mu= 
To (M*TRX)1’3 

wl 
- lo*’ ( 10,;ev)2’3 ( 102;ev)L’3 Mpc-‘; (21) 

where M4 is the vacuum energy at the very end of inflation, 2’~ is the reheat 

temperature, and Ts = 2.726 K is the present temperature. The scale k,, 

corresponds to the scale that crossed outside the horizon just as inflation 

ended, and is the highest frequency gravity wave produced. 

If 100% of the vacuum energy is converted into radiation at reheat- 

ing, then inflation is followed immediately by the usual radiation-dominated 

epoch and Tau .N M. For “imperfect reheating,” there is an epoch between 

the end of intlation and the beginning of radiation domination where the en- 

ergy density of the Universe is dominated by the coherent oscillations of the 
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scalar field responsible for inflation, and Tuu < M. In this case, the energy 

density in gravitational waves decreases as k-* from k = k. x TO (T&mpt) 

to k = k,, 131; the scale k. crossed back inside the horizon just as the 

Universe became radiation dominated. 

The contribution of tensor perturbations to the variance of the multipoles, 

which arises solely through the Sachs-Wolfe effect [7, 91, is given by 

(l%l’) = 36** AT ;I; " ;; c lfi(u)l2 lT("/uEQ)1* $; (22) 

where 

au) = - LSlra)” 
dy 0) kFIy”;;] , (23) 

u = kT0, y = k7, and ?lEQ = kE@. 

This expression is identical to previous results with the exception of the 

inclusion of the transfer function to properly take sccount of short-wavelength 

modes, k 2 kEp. Since lT(k/k&l’ 0: k2 for k 2 kEQJ without the trans- 

fer function the contribution from these modes has been underestimated. In 

Fig. 4 we show our results for the variance of the multipole moments, com- 

pared to those which do not take the short-wavelength modes into account 

properly. The correction to previous results is important even for values of I 

assmallss10orso. 

The tensor contribution to the quadrupole CBR temperature anisotropy 

is given by 
AT * 

( > T 
= 5hA*) N o 6o6&. 

0 Q-T - 4x - ’ m4 ’ 
(24) 

where the integrals in the previous expressions have been evaluated nu- 

merically; .for the quadrupole -term,~ including the transfer function does 

not make a significant difference. Using the COBE DMR measurement 

for the quadrupole anisotropy (derived for scale-invariant perturbations), 
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ATo = 17 XI= 4pK [15], as a rough upper limit to the tensor contribution, 

V, can be bounded 1161, 

V, 5 6.4 x 10-“mpr4 N (3.5 x 10’s GeV)*. 

This implies that inflation takes place at a subPlanck energy scale (at least 

the last 50 or so e-folds that are relevant for us) and that flow can be at 

most about lo-“. In models of first-order inflation another, more potent, 

source of gravity waves is produced by bubble collisions during reheating, 

though this radiation is peaked over a very narrow range of frequencies, 

k z 2 x lo*’ (Tuu/1014 GeV) Mpc-’ [17]. 

For reference, the Sachs-Wolfe contribution to the CBR‘anisotropy pro- 

duced by scalar modes, which is the dominant contribution for I 5 100, is 

A = 1024& V, 
%Ef m 43 ; PI 50 
WA*) c 2 v, 

41r 45 mpl*x* ’ 50 
(26) 

where u = kq,, ~EQ = km, and T&J) is the transfer function for scalar 

perturbations, which depends upon the matter content of the Universe. For 

cold dark matter the transfer function is [18] 

ln(1 + 0.146y)/O.l46y 
Ts(y’ = [l + 0.242y+ y* + (0.340~)~ + (0.417y)*]‘/*’ (27) 

The scalar and tensor contributions to a given multipole are dominated 

by wavenumbers kTO x 1. For scale-invariant perturbations and small 1, both 

the scalar and tensor contributions to 1*(]aa,,]*) are approximately constant. 

The Sachs-Wolfe contribution of scalar perturbations to 1*(]ar,]*) begins to 
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decrease for 1 = Iso - 100 since the scalar contribution to these multi- 

poles is dominated by modes that entered the horizon before matter domi- 

nation and are suppressed by the (scalar) transfer function. (It is important 

to remember that for I 2 100 the Doppler and intrinsic contributions to 

the scalar-producedC!BR anisotropy dominate.) The contribution of tensor 

modes to 1*(la,,,,/*) begins to decrease for 1 - re/r~ss x ,/G (- 35 for 

.zr,ss - 1100) because the tensor contribution to these multipoles is domi- 

nated by modes that entered the horizon before last scattering (and hence 

decayed as R-r until last scattering). The behaviour of the multipole am- 

plitudes is just ss expected from the qualitative picture, cf. Fig. 1, and is 

illustrated in Fig. 4. 

2.3 Finite thickness of the last-scattering surface 

Last scattering is not an instantaneous event that occurred simultaneously 

everywhere in the Universe. The last-scattering surface has a finite thickness, 

in comoving distance from the observer, o,, and in red shift, a,. This fact 

leads to the damping of the contribution of modes with large wavenumber 

because the contribution to CBR anisotropy in a given direction averages 

over last-scattering events taking place over a finite distance, which washes 

out short-wavelength modes, k 2 lin = o;‘. This physics is not inch&d 

in our analysis. Since the Zth multipole is dominated by the contribution of 

wavenumbers kr s x I, this damping only affects multipoles I 2 TO/U,, multi- 

poles that were already very small. Thus, our neglect of the finite thickness 

of the last-scattering surface does not affect our results in an important way. 

(This is not true for scalar perturbations: the finite thickness of the last- 

scattering surface reduces the CBR anisotropy on small-angular scales that 
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would otherwise be large.) 

To be more specific, in the case of standard recombination, the differential 

probability that the last-scattering event occurred at comoving distance z- 

the visibility function--can be approximated by a gaussian.(see e.g., [ll]) 

dP ds --we -‘(*) 
dz dz 

z Cexp[-(2 - ~rnss)~/2uz], (28) 

where C N 182~70, zms N 2H{’ is the center of the last-scattering surface, 

and or = 2H;‘/910 is the thickness of the last-scattering surface. (In red 

shift, the thickness is o, N 80.) Here s(z) is the optical depth from our 

position to a point comoving distance I from us, 

s(z) = /,’ ne(z)uT 2 dz, (29) 

where q- u 0.66 x 10-24cmz is the Thomson cross section and ra, is the 

number density of free electrons (x X.ne). The damping scale associated 

with the thickness of the last-scattering surface is k~rs = Q/U= N 910, which 

leads to the suppression of the angular power spectrum for I 2 910, where it 

is already very small, cf. Fig. 4. 

In the case of no, or only partial, recombination the last-scattering surface 

is very thick, a, N .q,ss. The visibility function can be (le& well) approxi- 

mated by a gaussian, 

$2 Cexp[-(2 - ass)*/24 

where 

c = l/&G& zLss N 2H,-71 -l/d-]; oz = 2&r,/-. 

The red shift of the last-scattering surface 

1+ tr,ss N (0.03X,nfrh)-2’3. 
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In the case of nonstandard recombination the damping scale kors N 46 is 

smaller-because the last-scattering surface is thicker-but again, this damp 

ing only affects multipoles that were very small anyway, I 2 4a > fi, 

cf. Fig. 5. 

2.4 Comparison with numerical results 

In Ref. [lo] the coupled Boltzmann equations for the CBR intensity in a per- 

turbed FRW model were solved numerically to compute the CBR anisotropy 

that arises due to both scalar and tensor perturbations. The authors of 

Ref. [IO] have gracious about comparing their preliminary results with ours. 

Where comparison is possible, the agreement is always qualitatively very 

good, though there are quantitative disagreements: for values of 1 where the 

multipoles are of significant size at most about 20%. As we shall describe, 

we believe that we understand the reason for these disagreements. 

For very large I, corresponding to 1 2 ICD~,J, the numerical results of 

Ref. [lo] fall off more rapidly than ours; as discussed above this is because 

we have not taken account of the damping due to the finite thickness of 

the last scattering surface. The discrepancy here-though large-is of little 

practical concern as the multipoles are very small for such values of 1. 

A more important discrepancy arises in cases where last-scattering occurs 

before the Universe is “very matter dominated.” The matter and radiation 

energy densities become equal at a red shift fEQ N 2.4/z* x 104; for h = 0.5 

and standard recombination zms and .ZEQ differ only by a factor of 5.4. This 

means that the Universe is not well approximated as being matter dominated 

at last scattering. In particular, the growing mode gravity-wave perturbation 
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is not given by 3jr(kr)/kr and 

which differs from the matter-dominated result, rrss = 2Hf’a by a 

factor of 2/3. To correct Eq. (23) one would have to: (i) Use the correct 

expression for rms, which is easy to do; (ii) Modify the transfer function, 

taking into account that it is a function of red shift, which means that it can 

no longer be taken out of the inner integral; and (iii) Replace the conformal- 

time derivative of the growing-mode eigenfunction, the js(y)/y term, by the 

proper expression which must be evaluated numerically and is a separate 

function of r and Ic (points (ii) and (iii) are not unrelated). Needless to say, 

these modifications eliminate the advantages of the analytic approach. 

The parameter that controls the size of the error made by sssummg that 

the Universe is matter dominated at last-scattering is znss/zzq. In the worst 

case considered, standard recombination and h = 0.5, this parameter is about 

0.2, which is about equal to the maximum difference between our analytical 

results and the numerical results of Ref. [lo]. When zms/zzp is smaller, 

e.g., larger Hubble constant or nonstandard recombination, the discrepancy 

is much smaller. For example, with h = 0.5 and .zms = 76, the differences 

between the numerical results of Ref. [lo] and our analytical results is only 

a few per cent (until the multipoles become very small due to the damp- 

ing associated with the finite thickness of the last-scattering surface). The 

advantage of the analytic approach is ease of calculation, particularly the 

ability to study a variety of scenarios. 
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2.5 Generalized for tilt 

We now extend our -results to the general case where the inflationary per- 

turbations are not precisely scale invariant. Since the ratio of the tensor to 

scalar contribution to the CBR quadrupole anisotropy increases with tilt, 

(~a~,,,‘,1*)/(~e&,~‘) N -771~ (nr = 0 for scale invariance), the case of non scale- 

invariant perturbations is very relevant in discussing tensor perturbations. 

The deviations from scale invariance are most significant for steep potentials 

(e.g., exponential potentials) and potentials whose steepness changes rapidly 

(e.g., low-order polynomial potentials). To lowest order in the deviation from 

scale invariance everything can be expressed in terms of the value of the po- 

tential VW, its steepness 150 = (mplV’/V),, and the change in its steepness 

z;O, all evaluated about 50 e-folds before the end of inflation where the scales 

of astrophysical interest crossed outside the horizon during intlation [5, 191. 

Beginning with the tensor perturbations and using our previous notation, 

the power spectrum is now given by 

P,(k) = AT~“*-~ IW/~EQ)12 [y;)] * ; 

A =8v50 T 
p-Y; - ~~T,l’ k-“T 

3r mP14 (1 - ;7tT)2”‘[r($)]~ 5o ’ 

X2 nT = -2 
8ir’ 

Here km is the scale that crossed outside the horizon 50 e-folds before the 

end of inflation, nr measures the deviation from scale invariance, and the 

expression for AT includes the O(nr) correction. (All formulas simplify if 

the potential and its derivatives are evaluated at the point where the present 

horizon scale crossed outside the horizon, i.e., kaq z. 1.) The variance of 
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the multipole amplitudes is given by 

w+ 3) --ny 
(brml*) = =*AT r(I _ 1) 70 

du 
u”= IT(~u~Q)I* Iwu)l* -; 21 (32) 

where F,(u) is defined.in Eq. (24), u = kro, y = kr, and r&q = kE@,,. 

In Fig. 6 we show the scalar and tensor contributions to the angular 

power spectrum for spectra that are tilted by the same amount, n - 1 = nT = 

-0.15. This is an interesting case because the scalar and tensor contributions 

to the quadrupole anisotropy are essentially equal [4]. The effect of scale 

noninvariance is to tilt the angular power spectra, by approximately a factor 

of I”-’ for scalar and I”= for tensor. 

The analogous expressions for scalar perturbations are 

{q; - f(n - 1)]}2 

mplTx& [I + inT - i(n - i&?“-‘[r($)]* kii”’ 

40 mm& n = l--++; 
8~ 497 

(l%,I*) = A 2 TO’-. irn I‘“--l IT&‘/t‘EQ)l* lj,(U)l* $; 

where u = kro, t&p = kEQ, a+$ Ts(u/ unq) is the transfer function for scalar 

perturbations. 

By numerically integrating Eqs. (33,34) we obtain approximate expres- 

sions for the quadrupole anisotropy due to scalar and tensor perturbations 

in the non scale-invariant case: 

5Mn12) = 4r 2.22 mpl”x& 1 + l.l(n - 1) + &T - (n - I)] > ; 

5~l~?tnI’) 
47r = 0.606 $+(I + 1.2nT); 

(l&J*) - 
wn12) - 

-7nT (1 + l.hT + o.l[nT - (n - I)]). 
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We have taken kM.ro = 1, tms = 1100 (the results change very little for 

rrss = 76), and for the scalar case h = 0.5. Using these expressions, the fact 

that the scalar and tensor contributions to the quadrupole anisotropy add 

incoherently, and the COBE DMR quadrupole measurement, we can solve 

for the variance of the tensor quadrupole, equivalently V&Jmp14, in terms of 

the tenSOr tilt nr: 

V50 6.4 x lo-” 

mp14 = 1 - 0.147$’ (35) 

These expressions indicate that the-more tilted the gravity-wave spectrum 

is, the larger is its amplitude, as noted earlier [4]. 

The energy density in the stochastic background of inflation-produced 

gravitational waves today is given by 

d&w Vi0 
d = 4- 

[r( $ - inT)]* 
mp,4 (I_ ~nT)p,.py~)]2 (k/k~)““IT(k/b)I* (kro)-*; 

N ;” ; ;I;; (I+ O.lnT) (k/k&“‘jT(k/kE~)l* (kTO)-*; (36) 

where the second expression follows from using the COBE DMR normal- 

ization to express the energy density in gravity waves in terms of the tilt 

parameter nr alone. In Fig. 3 we show the spectrum of stochastic gravi- 

tational waves for nr = -0.003, -0.03, -0.3, using the COBE quadrupole 

normalization. 

The total energy density in gravity waves increases with tilt (i.e., ur < 0), 

as does the tensor contribution to the CBR quadrupole anisotropy. However, 

this is not the entire story; the most sensitive ‘direct” probes of gravity 

waves, millisecond pulsars [ZO] and future Laser Interferometer Gravity-wave 
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Observatories (LIGOs) (211, are only sensitive to gravity waves with very large 

wavenumber, kT0 m eN with N N 26 for millisecond pulsars and N N 48 for 

envisaged LIGO detectors. Because of the (k/ks)“T factor in Eq. (37) tilt 

depresses the energy density in gravity waves on the relevant scales. To be 

more specific, for k > kE4 and h = 0.5 

dRw(k = eN7,‘) 2: l.g x 1o-l4 nT enrN 
dlnk nT - 0.14’ 

It is simple to show that the energy density in gravity waves on the scale 

k = eNrcl is maximized for a value of nr N -l/N, at a value of about 

5 x 10-14/N. While the amount of tilt that maximizes the energy density in 

gravity waves on the-scales relevant to both millisecond pulsars, nr N -0.64, 

and LIGOs, nT N -0.02, is quite reasonable in the context of well motivated 

inflationary models [5], the predicted energy density in gravity waves is well 

below the sensitivity of either detector, about Row +.. IO-r0 for advanced 

LIGO detectors and N lo-’ currently for millisecond pulsars. Thus, direct 

detection of the stochastic background of gravitational waves does not seem 

promising. 

3 Discussion 

The tensor contribution to the variance of the multipole amplitudes depends 

significantly upon the red shift of the last-scattering surface and less impor- 

tantly upon the red shift of matter-radiation equality through the value of 

the Hubble constant (see Fig. 4). For scale-invariant gravity-wave perturba- 

tions 12(la~m12) is roughly constant for 1 5 JG; then decreases as Ze4 

for I 5 ,/ll; and for 12 Jx decreases ss I-*. In the case of non 
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scale-invariant tensor perturbations these results are modified by a factor of 

PT. 

In Fig. 5 we show the tensor contribution to the angular power spectrum 

forno recombination and zrss = 76. The dramatic fall off occurs at a rela- 

tively small value of I, around 10. Thus, the tensor angular power spectrum 

can, in principle, be used to discriminate between standard recombination 

and no recombination, though due to cosmic variance, the finite “multipole 

resolution” of experiments, and the difficulty of separating the scalar and 

tensor contributions to CBR anisotropy this is by no means a simple task. 

The angular power spectrum also depends upon the deviation of the ten- 

sor perturbations from scale invariance, both in its amplitude relative to the 

scalar perturbations and its dependence upon 1. The angular power spectrum 

for tilted tensor perturbations is shown in Fig. 6. 

Finally, consider the cold dark matter + cosmological constant model 

(ACDM), proposed to reconcile a number of discrepancies of the CDM model 

with observational data [22]. It is characterized by: Qs N 0.05, Rcor,r N 0.15, 

no = n, + Rmld = 0.2, R* N 0.8, and h N 0.8. For tensor perturba- 

tions most of the Sschs-Wolfe integral for the anisotropy arises near the last 

scattering surface where the effect of a cosmological constant is negligible. 

(Thii is not the case for scalar perturbations, and the formula for the Sachs- 

Wolfe contribution must be modified significantly [23].) Thus Eq. (23) for 

the contribution of tensor perturbations to the angular power spectrum is 

unchanged, with the following substitutions: 

ksq = 
&$-&lRsq 

ZJZ-2 
N 30Ho; 

Rm = 4.18 x IO-~ (f-i,&*)-’ cx 3.27 x 10-4; 
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7. N H,-’ 
1 

14 
dR 

0 RoR + R&q + Q,R4 
N 3.89H;‘; 

TLSS N 20,“2H,-‘/diTi& 1: 0.135H;‘. (33) 

The angular power spectrum is shown in Fig. 7 for standard recombina- 

tion in the ACDM model. Unfortunately, the difference between the ACDM 

and CDM models is not great. 

Finally, it is also straightforward to modify our results for the energy 

density in gravitational waves today for the ACDM model: 

- = 4n$?- d&w PYj - &)I2 
dlnk mp,4 (1 - $zT)z’~[r(+)]s (k/W”‘l~(W~q)12 (k/2H;1)-2. 

(39) 
Since the main change is to reduce the energy density on a given scale by a 

factor of Di N 0.04, our conclusions about the direct detection of inflation- 

produced gravity waves remains. 

We thank Paul J. Steinhardt for helping us make detailed comparisons be- 

tween our work and that in Ref. [lo]. This work was supported in part by 

the DOE (at Chicago and Fermilab) and by the NASA through NAGW-2331 
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FIGURE CAPTIONS 

Figure 1: The qualitative behaviour expected for CBR anisotropy arising 

from scalar and tensor perturbations through the Sachs-Wolfe effect. The 

horizon-crossing amplitudes of the scalar and tensor perturbations-are taken 

to be ES 0: X(1-“)/2 and ET 0: XVnri2 es r pectrvely (scale invariance corre- 

sponds to n - 1 = nT~ = 0). 

Figure 2: The evolution of the transfer function for gravity-wave pertur- 

bations; from top to bottom, the transfer function computed at red shifts 

2 = 0,30,100,300,1000. 

Figure 3: The energy density of the stochastic background of inflation- 

produced gravitational waves, in then scale-invariant limit (broken curve, ar- 

bitrary normalization), and for no = -0.003, -0.03, -0.3, normalized to the 

COBE DMR qusdrupole (solid curves). 

Figure 4: The tensor contribution to the angular power spectrum normal- 

ized to its qusdrupole, and for reference the Sachs-Wolfe part of the scalar 

contribution normalized to its quadrupole (broken curve; note, for I 2 100 

the Doppler and intrinsic contributions are more important than that of 

the Sachs-Wolfe). Tensor results are shown with (upper curve) and without 

(lower curve) the transfer function; in all cases .z~ss = 1100 and h = 0.5.~ 

(a) For I < 100; dotted curve shows tensor resuis with transfer function for 

h = 1.0. (b) For 15 1000. 

Figure 5: The tensor contribution to the angular power spectrum nor- 

malized to its quadrupole, for zrss = 76 (solid curve)~ and for comparison 

ZLSS = 1100 (broken curve); in both cases h = 0.5. 
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Figure 6: Same 8s Fig. 4, except for non-scale invariant perturbations, 

n - 1 = no = -0.15. The results here correspond roughly to those in Fig. 4 

“tilted” by a factor of (r/2)-0.15. 

Figure 7: The tensor contribution to the angular power spectrum normal- 

ized to its quadrupole for cold dark matter + cosmological constant with 

zLss = 1100, 0~ = 0.8, and h = 0.8 (solid curve) and for comparison, 

z~ss = 1100, Rs, and h = 0.5 (broken curve). 
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